Model Reduction
Researchers in Model Reduction

Bio ItemChristopher Beattie , bio
The principal research interests of Professor Beattie are in the areas of scientific computing and large scale computational linear algebra, with an emphasis on iterative Krylov methods.

Bio ItemJeff Borggaard , bio
Professor Borggaard studies the design and control of fluids. This includes computational fluid dynamics, control theory, optimization, sensitivity analysis, uncertainty quantification, and reducedorder models. In each case, the application of these research areas to partial differential equations that describe fluids are of interest.

Bio ItemJohn Burns , bio
Professor Burns' current research is focused on computational methods for modeling, control, estimation and optimization of complex systems where spatially distributed information is essential. This includes systems modeled by partial and delay differential equations. Recent applications include modeling and control of thermal fluids, design and thermal management systems and optimization of mobile sensor networks.

Bio ItemYingda Cheng , bio
Professor Cheng's research areas are in scientific computing, applied mathematics and datadriven modeling and computation. She develops numerical methods for partial differential equations, particularly those in higher dimensional space. The application area of Professor Cheng's research includes fusion energy and semiconductor device modeling, to name a few.

Bio ItemEric de Sturler , bio
Professor de Sturler's research focuses on numerical analysis for largescale computational problems with an emphasis on fast solvers for linear and nonlinear systems, inverse problems and parameter estimation, optimization, and design, including iterative solvers and numerical linear algebra, randomization, stochastic methods, model reduction, and high performance computing with applications in computational mechanics, such structural optimization and computational fluid dynamics, tomography and image reconstruction, big data, computational physics, biology, and computer graphics.

Bio ItemMark Embree , bio
CMDA Program Director Professor Embree studies numerical linear algebra and spectral theory, with particular interest in eigenvalue computations for nonsymmetric matrices and transient behavior of dynamical systems.

Bio ItemSerkan Gugercin , bio
Professor Gugercin studies computational mathematics, numerical analysis, and systems and control theory with a focus on datadriven modeling and model reduction of largescale dynamical systems with applications to inverse problems, structural dynamics, material design, and flow control.

Bio ItemTraian Iliescu , bio
At the core of Professor Iliescu's research program is his vision of using both mathematics and computations to provide new knowledge on turbulent fluid flows dominated by coherent structures and create models with practical impact in engineering, climate modeling, and medicine. The ultimate goal of his research program is to transform turbulence modeling as we know it today and use mathematics, computations, physics, and data to discover general laws of turbulent fluid flows.

Bio ItemHonghu Liu , bio
Professor Liu's research focuses on the design of effective lowdimensional reduced models for nonlinear deterministic and stochastic PDEs as well as DDEs. Applications to classical and geophysical fluid dynamics are actively pursued. Particular problems that are addressed include bifurcation analysis, phase transition, surrogate systems for optimal control, and stochastic closures for turbulence.

Bio ItemAgnieszka Miedlar , bio
Professor Miedlar conducts research in numerical analysis and scientific computing, with a focus on iterative solvers for largescale linear systems and eigenvalue problems, and adaptive finite element methods (AFEMs).

Bio ItemLayne T. Watson , bio
Dr. Watson's research interests include numerical analysis; nonlinear programming; mathematical software; solid mechanics; fluid mechanics; image processing; parallel computation; bioinformatics.

Bio ItemSteffen Werner , bio
Professor Werner conducts research at the intersection of scientific computing and numerical linear algebra with particular focus on scientific machine learning, model order reduction, datadriven modeling, optimization and control of partial differential equations, matrix equations and mathematical software development.

Bio ItemAndrea Carracedo Rodriguez , bio
Dr. Carracedo Rodriguez conducts research in numerical analysis, with a focus on efficiently building approximations to dynamical systems from data or via model reduction.

Bio ItemJorge Reyes , bio
Dr. Reyes' research involves the theoretical and computational study of fluid dynamics primarily based on the NavierStokes equations (NSE). These studies consist of the finite element analysis of numerical solutions for fullorder models and the development of corresponding reduced order models (ROMs).

Bio Item

Bio ItemNilton Garcia Hilares , bio
Dr. Hilares' research interests lie in computational and applied linear algebra.

Bio ItemPetar Mlinarić , bio
Dr. Mlinarić conducts research in the field of model order reduction, in particular, structurepreserving and optimal methods.

Bio Item