Learning Objectives
In this instructional unit, students will

e develop intellectual need for the PMI and learn to reason flexibly with this proof technique.

e play with a geometric task to explore particular cases of a conjecture, focusing on how one
case might depend on the previous case.

e analyze the logic of scenarios with given hypotheses (that are adaptations to the hypotheses
of the PMI) to determine whether a conjecture must be true for all natural numbers.

e explore and conjecture the necessary logical components (the base case and the universally
quantified inductive implication) of the PMI.

e explain the role of the base case and the inductive implication, and select the correct quan-
tification for linking these components together.

e determine whether adaptations to the hypotheses of the PMI are enough to recover the con-
clusion.

e use correct logical structure together with appropriate mathematical language to write a
correct inductive proof.

e recognize and implement appropriate logical adaptations to the PMI to prove conjectures that
require stronger assumptions and/or additional base cases.

e articulate the limitations of proof by mathematical induction.

Norms & Heuristics
There will be opportunities to reinforce the following norms and heuristics throughout this lesson:

e Challenging arguments to reach consensus. Students will discuss and determine what the
necessary logical components are for proving a statement is true for all natural numbers.

e Sharing what you are actually thinking, not just what you think others may want to hear.

e Drawing a picture. Several visualizations of the classic induction metaphors are given through-
out the lesson.

e Separating solving for the proof from writing the proof. A lengthy discussion of key ideas is
carried out before the instructor writes a complete proof by mathematical induction.



Task Goals & Implementation Notes

Day 1

Task 1. “The L-Tiles Task.” Productive engagement with this task should allow students to:

be generative in building the next case from the previous case

assess whether their argument between specific cases generalizes to work between any two
consecutive cases.

test and adapt their argument as needed when the square that is removed is arbitrarily chosen.
reflect on the logical structure of quasi-induction.

provide students with the space to make sense of and summarize the general argument from
one case to the next.

promote student noticing of the role of the base case and how the next case depends on the
previous case.

begin to establish students’ intellectual need for the logical components (hypotheses) of PMI.

Activity Timing
1 | Motivating PMI | 3 minutes
Task 1(a) Launch: 5 minutes

Group work: 15 minutes
Whole-class discussion: 15 minutes
3 | Task 1(b) Launch: 3 minutes

Group work: 5 minutes
Whole-class discussion: 4 minutes

By the end of the whole class discussion, the following key ideas should have been addressed:

A written summary of the connection between the n = 1 and the n = 2 case. Hopefully,
splitting the grid into quadrants will be suggested by one of the groups. However, if it is not,
you might ask, “did anyone notice that it seems like the n = 2 case is just four copies of
the n = 1 case?” Ask them whether each copy is exactly the n = 1 case and what’s possibly
different.

It would be tedious to tile the grid by brute force for larger values of n. Thus, proving
the claim with the PUG is less than desirable here and motivates searching for connections
between cases.

Showing that 3 divides the number of squares that must be tiled would be insufficient for
proving the claim is true. Notice that divisibility does not impose the constraint that the
3-square tile be L-shaped. Ask the class, “Did anyone think about proving this by showing
the number of squares that must be tiled is divisible by 37 What did you talk about there?”



Task 1. Reinventing the Principal of Mathematical Induc-
tion

Our goal is to prove the following claim:

For alln € N, a 2™ x 2™ grid of squares with exactly one square removed can be tiled using
L-shaped tiles of 3 squares.

With your group, explore why this claim is true for n = 1, n = 2, and n = 3. Can you see how the
truth of the n = 2 case might depend on the n = 1 case being true? How might the truth of n =3
depend on n = 2 being true?

n=1:
n=2
n =3

Can you outline the idea behind your group’s argument? What are the key logical components that
are needed to generalize your argument to prove the claim is true for all n € N (not just n = 1,2, 3)7



Day 2

Activity Timing
1 | Symbolizing and quantifying | Launch: 3 minute
the inductive implication Group work: 4 minutes
Whole-class discussion: 5 minutes
2 | Task 2 Launch: 1 minute

Group work: 5 minutes
Whole-class discussion: 20 minutes
3 | Task 3 Launch: 1 minute

Group work: 3 minutes
Whole-class discussion: 10 minutes

Task 2. “The Scenarios Task”.

Productive engagement with this task should allow students to:

play with various logical components to determine whether they combine to prove that a
statement P (n) is true for all natural numbers n.

explain why the base case is essential in an inductive argument.

explain how the quantification of the inductive implication impacts the values of n for which
P (n) is true.

analyze the role of the initial value of k in linking the base case with the inductive implication.

notice that additional base cases and/or additional hypotheses for the inductive implication
might also be used to construct a valid inductive argument. This primes them for strong
induction!

By the end of the whole class discussion, the following key ideas should have been addressed:

the staircase metaphor
the universal quantification of k.
the values that k should range over, i.e., 1 < k <n.

For Scenario (1), the language used when instantiating k in the inductive assumption might
inadvertently assume the claim itself

For Scenario (2), existential quantification of P(k) — P(k + 1) is not enough.

)
3), these seem like the correct components.
)
)

(
For Scenario (
For Scenario (4), the base case is essential.
(

For Scenario (5), the initial value of k is important for linking the base case to the inductive
implication.



e For Scenario (6), the base case and/or inductive hypothesis can be adapted to produce another
version of PMI.



Task 2:

Suppose P(n) is a statement about a positive integer n, and we want to prove:

P(n) is true for all positive integers n.

Each part below provides given information that is known to be true. For each part, decide with
your group whether this information is enough to prove P(n) is true for all positive integers n. If
the answer is yes, no justification is necessary. If the answer is no, explain why.

1.

2.

P(1) is true; for all integers k > 1, P(k) is true.

P(1) is true; there is an integer k£ > 1 such that P(k) — P(k+1).

P(1) is true; for all integers k > 1, P(k) — P(k+1).

For all integers k > 1, P(k) — P(k +1).

P(1) is true; for all integers k > 2, P(k) — P(k+ 1)

P(1) and P(2) are true; for all integers k > 2, [P(k — 1) A P(k)] — P(k+ 1).



Task 3. “What Does This Prove?”

Productive engagement with this task should allow students to:
e analyze mathematical language and practice connecting it to mathematical logic.
e abstract the underlying mathematical logic of a written proof.
e determine what mathematical statement is being proved by a given argument.

e Relate the vacuously true implication that was proved to the missing link between the base
case and the inductive hypothesis.

By the end of the whole class discussion, the following key ideas should have been addressed:

e The language in the proof indicates that an assumption is made and a conclusion is draw from
it—this is an implication.

e The logic of the proof is valid, but the assumption is false.

e This is a vacuously true implication because we cannot create a valid counterexample as there
is no integer equivalent to the next integer.

e There is a difference between knowing an implication is true and knowing the hypothesis is
true.

e The prove does not initialize an inductive algorithm as it does not prove the base case.

Keep prompts very open-ended here and expect a broad variety of ideas to emerge in this discussion.
Ideas for facilitating discussion:

e Invite students to tie their ideas to the staircase analogy. When we tried this, one student
said, “we never got on the staircase, so who cares if we can climb from one step to the next.”

e Ask students if they can articulate what seems to be missing from the argument.

e Ask whether the proof follows the structure for proving one of the scenarios in Task 2. The
connection to scenario (d) seems to be salient for students.

Task 3:

Consider the following argument.

Proof. Let k € Z" be arbitrary. Assume that k =k + 1.
Then, adding 1 to both sides, k + 1 =k + 2. n

What have we proved?



Task 4. “What is k?”

Productive engagement with this task should allow students to:

e notice that n remains fixed throughout the proof, while k varies over values ranging from the
base case up to and including n — 1.

e raise their awareness of the limitations of induction: it cannot prove the infinite case where
n — oo.

The following key ideas should be addressed during whole class discussion:

e n is fixed throughout while k& captures the variation as you step from the base case to the nth
case.

e why denoting the inductive implication as P(n) — P(n + 1) might obscure important math-
ematical features and limitations of PMI.

Task 4:

We have introduced a new variable k in the statement of PMI. Discuss with your group what the
role of k is. Why do you think we use k instead of n?



Day 3

Note: students do not write a formal proof by mathematical induction until Day 3, and only after
we have given the statement of the PMI! This write-up is also heavily scaffolded to support attention
to the main ideas.

Activity Timing

1 | Students conjecture PMI | Launch: 1 minute

Group work: 3 minutes
Whole-class discussion: 1 minute
2 | State and discuss PMI 5 minutes

3 | Task 4 Launch: 1 minute

Group work: 1.5 minutes
Whole-class discussion: 6 minutes
4 | Task 5 Launch: 1 minute

Group work: 10 minutes
Whole-class discussion: 11 minutes
Writing up the proof: 9 minutes

Task 5. Practicing the PMI

Productive engagement with this task should provide students with opportunities to:
e attend to the base case.
e link the base case to the inductive implication with appropriate quantification
e acknowledge that the inductive process concludes with P(n) being true.
e separate solving for the proof from writing the proof.

e engage with the cognitive demand that domain-specific knowledge imposes on proving the
inductive implication.

e frame their approach with demonstrating the hypotheses of PMI.

We do not expect students to return to whole class discussion with a perfect, complete proof. The
goal of discussion is for students to frame the argument at a high level—not to write a formal proof.
The following key ideas should be addressed during whole class discussion:

e articulate the two things (in terms specific to this claim) that must be shown to prove the
claim is true for all n.

e briefly outline why the base case is true.

e suggest big picture ideas for how the inductive implication might be proven. For example,
this may look like a student saying, “we want to use that 3 divides 22* — 1 to somehow show
that 3 divides 22(+1) — 1,

e state the precise definitions of 3 divides 22* — 1 and 3 divides 22++1) — 1.



Task 5:

Prove that for all n € Z2°, 3 divides 22"
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