INTRODUCTION

The purpose of this handbook is to advise you, the mathematics student, about the Mathematics Department and the curriculum for the Bachelor of Science degree in Mathematics. There are four different degree options (paths) that you may follow towards a B.S. degree in Mathematics:

1. Traditional Option (technically, the “no option” option)
2. Applied Computational Mathematics Option (ACM)
3. Applied Discrete Mathematics Option (ADM)
4. Mathematics Education Option (Math Ed or MSTR)

The curriculum of each of the four degree options is designed to give you a solid foundation in the basic areas of mathematics with supporting background in applied areas. A coherent program of courses in fields other than mathematics, but in which mathematics is used significantly, is valuable as part of a general education in mathematics and is extremely valuable for employment opportunities.

The Traditional Option, as its name implies, yields a broad and flexible background in mathematics, while the other three options are more specialized. The ACM Option is designed for students who want to have an applied mathematics career in an area closely associated with physics, some form of engineering, etc. The Traditional and ACM options require that you work with your advisor to create a plan of study in an applied area of your choosing that will support your post-graduation goals.

The ADM Option is designed for students who want to have an applied mathematics career in an area closely associated with computer science. The Education Option is designed for students
who want to teach high-school or middle-school mathematics. The ADM and Math Ed options have the applied areas and associated required courses already determined -- computer science courses for ADM and education courses for Math Ed. More details and specific requirements can be found in the graduation checksheets and in the Degree Options section below.

Though the degree options have different graduation requirements, and each is intended to support various post-graduation goals, all four degree options yield the same degree -- a B.S. in Mathematics. The first two years of coursework are nearly identical among the degree options, making it easy to change degree options early in your undergraduate mathematical career. It is critical that you discuss your mathematical interests and post-graduation goals with your advisor early and often in order to determine the degree option that will be best suited for you. If you are interested in graduate study, seek advice early and often about the degree option, coursework, and research experience that provide the best preparation for graduate work in your area of interest.

**ACADEMIC ADVISING**

Advising Process

Advising at Virginia Tech is a collaborative process between student and advisor leading to the exchange of information that encourages the individual student to make responsible academic and career decisions. As a math major, your academic advisor is a faculty member who can discuss details of course and career advice throughout your undergraduate career, in addition to many other aspects of undergraduate educational life. Advising information and resources can be found at: [math.vt.edu/advising](http://math.vt.edu/advising).
In addition to your assigned academic advisor, the Mathematics Department has designated Career Advisors. The Career Advisors will work with your academic advisor to provide information that will aid you in planning a career-oriented program. Information about career opportunities and career fairs will be sent to students periodically. In addition, you can explore the career resources and information posted on the Math Department’s Career Advising website: math.vt.edu/careers. Also see the section: Preparation for Post-Graduation Endeavors.

**DEGREE REQUIREMENTS**

The B.S. in Mathematics requires a total of 120 credits, comprised of the following:

- Pathways General Education Requirements: 45 credits
- Math Major Requirements: 60-75 credits*
- Free Electives: 9-21 credits*

*Range depends on degree option. More free electives could be possible by satisfying multiple requirements with a single course. Some math major requirements satisfy Pathways General Education requirements, and those credits are counted twice above, leaving every student with some free electives.

Exercise care in choosing your Pathways General Education classes and free electives. At a university you have opportunities that exist nowhere else. Choosing electives is one way for you to tailor your formal education individually. The ability to choose your own applications area and free electives makes this degree both strong and flexible.

**PROGRESS TOWARD DEGREE**

Students are expected to understand the Progress Toward Degree requirements and monitor their progress. You will be notified by the Math Department Advising Team if you fall out of compliance with Progress to Degree rules. In most cases, a probationary semester will be allowed, in which terms required to remain in the major are agreed upon between the student and the Math Department Advising Team. Failure to meet those terms generally results in removal from the mathematics major.

**MATH COURSE REQUIREMENTS – ALL DEGREE OPTIONS**

**YEAR 1**

**MATH 1225 and MATH 1226: Calculus of a Single Variable**

MATH 1225 and MATH 1226 are the standard mathematics courses for your first year. These courses introduce you to the language, techniques and applications of single-variable calculus.
Most students also take MATH 1454 - Intro to Math Programming. This course satisfies the 3-credit programming course requirement for all math majors. MATH 1454 is intended for students who have no previous programming experience and is taught using Matlab.

You should also take MATH 1004 and MATH 1044, Discovering Mathematics I & II in your first year. These courses will introduce you to the scope and applicability of mathematics and its many sub-disciplines. You will be introduced to the process of thinking, learning, and writing as a mathematician through topics such as logic systems, recreational mathematics, LaTeX programming, history, ethics, open problems, and research in mathematics. The course has embedded upper-class peer mentors and also includes advising topics that will help you to learn the tools and tips for success throughout your college career.

**YEAR 2**

**MATH 2204: Multivariable Calculus, MATH 2114: Intro to Linear Algebra, MATH 2214: Intro to Differential Equations, and MATH 3034: Intro to Proofs**

In your second year, you will take introductory courses in Multivariable Calculus (essentially calc 3), linear algebra, and differential equations. In addition, MATH 3034, an introduction to creating logical proofs, should be taken in your second year. This course bridges the gap between the largely calculation-based nature of the calculus sequence and the fundamental-reasoning nature of the junior-level courses. Math Ed students will also take MATH 2644: Mathematics Tutoring.

Paralleling the standard versions of MATH 2214, MATH 2114, and MATH 2204 are honors sections of the same material (MATH 2214H, MATH 2114H, and MATH 2204H). Honors sections cover the material in more depth than standard courses and may include a few extra topics beyond what is covered in the non-honors sections. If you are interested in honors classes and you are not in the Honors College, you will need departmental approval. More information is available at [math.vt.edu/honors](http://math.vt.edu/honors).

The Math Department also offers the sequence MATH 2405H-2406H, Mathematics in a Computational Context. The yearlong honors sequence (5 credits fall, 5 credits spring) includes all topics taught in MATH 2114, MATH 2214, and MATH 2204, motivated by applications and taught with attention to algorithmic implementation. More information is available at [math.vt.edu/honors](http://math.vt.edu/honors).

**YEAR 3**

**MATH 3124: Modern Algebra (not required for ACM), MATH 3144: Linear Algebra, MATH 3214: Calculus of Several Variables (not required for Math Ed), and MATH 3224: Advanced Calculus**
MA TH 3224 is a proof-based perspective on single-variable calculus and MA TH 3144 is an advanced treatment of the linear algebra topics covered in MA TH 2114. These 3000-level courses should not be viewed as applied courses but rather as courses that build mathematical foundations necessary for most senior-level courses. Exceptional students may substitute MA TH 4124 for MA TH 3124, MA TH 4225 for MA TH 3224, and/or MA TH 4226 for MA TH 3214. Consult with an advisor about this decision.

ADM students will also take MA TH 3134: Applied Combinatorics and Graph Theory.

YEAR 4
At least four 4000-level MATH classes

There are a wide variety of 4000-level courses. Among these, students may decide to augment a chosen applications area or study fundamental extensions of junior-level courses in preparation for graduate school. With departmental permission, advanced students are also allowed to take graduate courses. The requirements for the 4000-level MATH courses differ by degree option. Refer to the section on degree options and the graduation checksheets for details.

DEGREE OPTIONS

The curriculum of each of the four degree options is designed to give you a solid foundation in the basic areas of mathematics with supporting background in applied areas. A coherent program of courses in fields other than mathematics, but in which mathematics is used significantly, is valuable as part of a general education in mathematics and is extremely valuable for employment opportunities.
**Traditional Option**

**Overview:** The Traditional Option, as its name implies, yields a broad and flexible background in mathematics. It ensures a comprehensive, well-rounded curriculum of foundational courses in analysis and algebra, while allowing the largest range of choices at the advanced level. One can acquire many aspects of the ACM and ADM options by appropriate choices of advanced and math-related courses.

**Applied Area:** Students in the Traditional degree option are required to work with their advisor to complete a Math-Related Course Plan. The plan should be submitted by the time the 2000-level MATH courses are completed (generally, by the end of the second year).

Math-Related Course Plan Requirements:
1. Contain at least 12 credits of coursework from a department(s) other than Mathematics.
2. The courses in the plan must be in an area to which mathematics can be applied.
3. The plan must exhibit depth in at least one application area. Typically depth means courses at the 3000 level or higher, often together with some 2000-level prerequisites for the higher-level courses. Some exceptions apply, but the plan generally should not include 1000-level courses and should include at least one course at the 3000-level or higher.

Popular concentrations recently have been in Computational Modeling and Data Analytics (CMDA), Statistics, Actuarial Science, Economics, Finance, and Physics.

**Click here for a sample list of math-related courses.**

The Math-Related Course Plan form can be found on the Forms page linked from the Math Department Advising Website: [math.vt.edu/advising](http://math.vt.edu/advising).

**4000-level MATH:** Twelve credits are required. Six of these credits must come from a sequence or cluster listed in the Traditional Option checksheet.

**Applied Computational Mathematics Option (ACM)**

**Overview:** The ACM option is designed to train students for successful entry into jobs in laboratories and industrial organizations, as well as to prepare students for graduate study in applied mathematics, mathematics, and the sciences. It has four components, each of which plays a crucial role in the career of a working applied mathematician.

- Area of Applications: see next section
Scientific Computing: Since computational hardware has become faster, cheaper, and more common, most applied mathematicians (especially those who work in laboratories) require the skills necessary to analyze, employ, and evaluate large-scale algorithms for solving multidisciplinary problems. The ACM option emphasizes these skills through courses in programming, scientific computing, and numerical analysis as well as an applications area.


Mathematical Rigor: Students in the ACM option will receive a firm background in rigorous mathematics through courses such as Calculus of Several Variables, Advanced Calculus, Linear Algebra, and Numerical Analysis. Courses such as Partial Differential Equations and Scientific Computing will provide links between mathematical rigor and applied problems.

**Applied Area:** One of the main components of the ACM program is the requirement that all students taking the option acquire a substantial knowledge in some area of applications. Each ACM student is required to work with their advisor to complete an Applications Area Course Plan. The plan should be submitted by the time the 2000-level MATH courses are completed (generally, by the end of the second year).

Applications Area Course Plan Requirements:
1. Contain at least 12 credits of coursework from a department(s) other than Mathematics.
2. The courses in the plan must be in an area to which mathematics can be applied.
3. The plan must exhibit depth in at least one application area. Typically depth means courses at the 3000 level or higher, often together with some 2000-level prerequisites for the higher-level courses. Some exceptions apply, but the plan generally should not include 1000-level courses and should include at least one course at the 3000-level or higher.

Popular concentrations recently have been in Computational Modeling and Data Analytics (CMDA), Statistics, Actuarial Science, Economics, Finance, and Physics.

**Click here for a sample list of applications area courses.**
The Applications Area Course Plan form can be found on the Forms page linked from the Math Department Advising Website: math.vt.edu/advising.

**4000-level MATH:** 21 credits are required, 6 of which are chosen electives. See the ACM Option checksheet for details.

**Applied Discrete Mathematics Option (ADM)**

**Overview:** As computer power and applications have evolved, the importance of combinatorics and discrete mathematics has grown tremendously. Techniques that employ combinatorics and discrete mathematics are being used in almost every area where mathematical computations are found. In response to this area’s increased importance and utility, the Math Department has developed the ADM Option, in which students are given exposure to fundamental ideas and techniques in discrete mathematics and combinatorics. Because computers are central in these applications, ADM students are required to develop a strong foundation in Computer Science.

The ADM Option is designed to allow students either to enter the job market after their undergraduate years or to continue their studies at a graduate-degree level. Those students who wish to begin work after their undergraduate degree will have training in combinatorial techniques, including graph theory (used in electrical circuits, optimization problems among many other areas), number theory (basic to coding theory and algorithm development), counting techniques (employed in almost every area where mathematics is applied), and general algebraic theories (providing the student with a strong abstract mathematical foundation). ADM students will be employable in many different capacities. For example, our students would be prepared to work for the National Security Agency (which employs many mathematicians and is interested in applications of coding theory), software development companies, engineering companies that need software development, and research laboratories such as Bell Laboratories and IBM Laboratories. ADM students will have both the mathematical sophistication to handle abstractions and a firm grounding in applicable techniques. These skills will be enhanced by a strong background in computer science.

**Applied Area – Computer Science:** ADM students are required to develop a strong foundation in computer science. By adding three additional credits in computer science, students can obtain a CS minor, and possibly continue on to graduate school in Computer Science. ADM students are required to take 12 credits of CS courses beyond the 3-credit programming requirement for all mathematics majors, and are also required to take one statistics course, chosen from a given list. See the ADM option checksheet for details.

**4000-level MATH:** Twelve credits are required. Six of these credits must come from a given list in the ADM Option checksheet.
Overview: The Mathematics Education option is designed to help prepare students to become future secondary mathematics teachers (grades 6-12) and leads to a B.S. in Mathematics at the end of four years. Students may complete an optional fifth year to earn an M.A.Ed. in Curriculum & Instruction with a specialization in Mathematics Education in the Virginia Tech School of Education. The 5-year program is designed to satisfy Virginia’s licensure requirements for teaching mathematics in the secondary schools.

Applied Area – Secondary Teaching in Grades 6-12: Math Ed students are required to take 21 credits of coursework in education, curriculum, and instruction. One statistics course, chosen from a given list, is also required. See the Math Ed option checksheet for details.

Professional Studies Component: EDCI 3004 is typically taken during the spring of a student’s third year. Students must be admitted to the Professional Studies Component before enrolling in EDCI 3004. The following minimal requirements must be met in order to be admitted into the Professional Studies Component:

- 2.3 overall GPA
- 2.3 GPA in all MATH courses taken up to the point of admission. These courses must include MATH 1225, 1226, 2204, 2114 and 2214 or their equivalents.
- Grade of C or better in all 3000/4000 level courses completed at the point of admission. Only the highest grade of repeated courses will count for this requirement.
- 2.0 GPA in ENGL 1105 and ENGL 1106
- Application for admission to the Professional Studies Program must be submitted by August 31 of the fall semester prior to the spring semester of EDCI 3004 enrollment.

The early field experience part of EDCI 3004 requires 30 hours spent serving as a teacher aide in a middle school or high school. Students are expected to provide their own transportation to and from the field experience placement. Upon completion of EDCI 3004, students will be evaluated by their cooperating teacher, university supervisor, and EDCI 3004 instructor regarding the quality of their field experience. If the evaluators decide that the field experience was not satisfactory, the student’s progress towards the degree will be considered not satisfactory. The student would then meet with their Math Department advisor and Math Education faculty to explore options for remediation or a degree in some other area of study.

4000-level MATH: Twelve credits of 4000-level courses specified on the checksheet are required. In addition, Math Ed students must choose one MATH elective course at the 3000-level or higher.
5000-level courses: Nine credits of graduate-level education courses specified on the checksheet are required. Students take the remaining graduate-level education courses once they are enrolled as graduated students in the School of Education’s M.A.Ed. program (in the summer before or during the 5th year of the program).

Application to the M.A.Ed. program: Students apply for admittance to the M.A.Ed. degree program in either the spring or fall of their fourth year of the B.S. degree. A 3.0 overall GPA is required. (Students with a lower GPA might be admitted on provisional status). Typically, students begin their coursework as graduate students in the summer after their fourth year. To begin then, the application deadline is February 15. Students who wish to dual enroll (take courses towards their B.S. and courses towards their M.A.Ed. during the same semester) or wish to be accelerated (take courses that count towards both their B.S. and M.A.Ed. degrees) will typically apply for the M.A.Ed. by the October 15 deadline. Application for the dual enrollment or accelerated undergrad/grad program is completed after admittance into the graduate program.

The M.A.Ed. program works with students to complete any remaining licensure requirements set by the Virginia Department of Education. More information about the program can be found at https://liberalarts.vt.edu/departments-and-schools/school-of-education/academic-programs/mathematics-education-program/about-maed.html.

SPECIAL OPPORTUNITIES FOR ALL MATHEMATICS MAJORS

Scholarships

In a typical year the Math Department awards more than $60,000 to 30+ students with the majority going to continuing students. To be considered for a Mathematics Department awarded scholarship, complete the following steps by mid January:

STEP 1 (required): Complete the application in Scholarship Central found at: https://vt.academicworks.com

STEP 2 (preferred): Provide additional information to the Mathematics Department Scholarship Committee to assist with scholarship decisions by filling out the form at: https://forms.gle/w5xSsGBzS7v4HHtj7

STEP 3 (optional): Fill out the FAFSA at https://studentaid.gov/h/apply-for-aid/fafsa
This form is only required for eligibility to certain scholarships based on financial need.
Decisions will be made either at the end of the spring semester or at the beginning of the fall semester. The Math Department has several scholarship programs including the Carl A. Persinger Scholarship/Fellowship for Mathematics, Daniel S. Kim Memorial Scholarship, David P. Roselle Scholarship, Lee R. and Regina Aultice Steeneck Endowed Scholarship, Marion V. Eckert and Charlotte H. Eckert Scholarship in Mathematics, Math Department Award, Patricia A. Caldwell Endowed Scholarship in Mathematics, Ray A. Gaskins Scholarship in Mathematics, Richard L. and Georgia W. Kimball - Norfolk Southern Scholarship, T.W. Hatcher Math Scholarship, The Kathleen Wampler & Forrest Dryden Rollins Scholarship in Mathematics, and the Wilbur Francis Wells Memorial Scholarship. Some have more than one recipient.

**Undergraduate Research**

The Mathematics Department at Virginia Tech emphasizes and features activity in undergraduate research. Numerous institutions, including the National Science Foundation, the American Mathematical Society, and the Society for Industrial & Applied Mathematics, also emphasize the importance of developing research opportunities for undergraduates. Undergraduate research experiences serve to prepare students for life after the B.S. degree, both in the industrial world and in graduate school.

Most undergraduate research is conducted through projects, directed by faculty members, for credit as MATH 4994. We have faculty members who serve as the coordinators of our undergraduate research program, but we also encourage students to reach out to any faculty member about potential research interests.

More information, including contact information for the Math Department Undergraduate Research Coordinators, research competitions and prizes, forms, and more can be found at: [https://math.vt.edu/undergrad-math/undergraduate-research.html](https://math.vt.edu/undergrad-math/undergraduate-research.html)

**Accelerated 5-Year Undergraduate/Graduate Degree Program in Mathematics**

The Accelerated Undergraduate/Graduate Degree Program is intended to allow undergraduate students who are prepared to take graduate courses to complete M.S. requirements one year after completing B.S. requirements. The principal feature of the program is that it allows the students to use 12 credits of graduate work simultaneously toward the completion of their bachelor's degree and a program of study leading to a master's degree. It is this ability to complete the final year of undergraduate work with the same courses that comprise much of the first year of graduate work that makes it possible to finish both degrees in five years. For more information, students should contact the Math Department Graduate Program Director and consult: [https://www.math.vt.edu/content/dam/math_vt_edu/documents/accel-u-g-degree.pdf](https://www.math.vt.edu/content/dam/math_vt_edu/documents/accel-u-g-degree.pdf)
Double Majors, Second Degrees (Dual Degrees), and Minors

Double majors, second degrees (also known as dual degrees), and minors often satisfy math applications area requirements for students in the traditional and ACM degree options. The same holds for students in the ACM degree option if the additional major or minor is in Computer Science.

Double majors and second degrees in Computer Science, Engineering, Statistics, Computational Modeling and Data Analytics (CMDA), or Physics are popular choices that yield excellent degrees. Students who pursue a double major receive a diploma in the primary major and a double major certificate in the second major. Students who pursue a second degree obtain two diplomas by taking an additional 30 credits of coursework at VT beyond the requirements of the primary major. If interested, discuss this with your academic advisor. More information about double majors and dual degrees can be found at: https://www.registrar.vt.edu/graduation-multi-brief/faq.html

Students typically have space within the mathematics undergraduate degree requirements to obtain a minor if desired. Students can explore minors, including Pathways Minors, offered by VT at https://vt.edu/academics/minors.html

Activities

Undergraduate and graduate students in mathematics are invited to join the Virginia Tech student chapters of the Mathematical Association of America (MAA) – also known as the Math Club, Association for Women in Mathematics (AWM), and the Society for Industrial and Applied Mathematics (SIAM). The activities of these chapters include talks on mathematics used in government and industry, as well as social, recreational, and charitable activities. More information can be found on our undergraduate website in the section titled Opportunities for VT Math Students: math.vt.edu/undergrad-math

Virginia Tech has a chapter of Pi Mu Epsilon, a national organization whose purpose is the promotion of scholarly activity in mathematics. Outstanding math majors may be nominated for membership in this organization in their junior or senior years.

Matecharlas provides students with the opportunity for informal discussions about 1000-level MATH courses with instructors fluent in Spanish. Brush up your Spanish and/or math skills with Matecharlas! Organized by Math Department faculty member and academic advisor Dr. Fanny Jasso, with support from El Centro (the Hispanic and Latinx Cultural and Community Center), Matecharlas meets weekly at El Centro -- 309 Squires Student Center. Members of the group also talk about careers, academics, experiences, or any combination that includes mathematics. All interested students are welcome. Contact: Dr. Fanny Jasso: efjasso@vt.edu
Paid On-Campus Jobs Opportunities in Math

The Mathematics Department and other offices around campus employ both undergraduate and graduate students in a variety of positions that require a background in mathematics. Positions are generally focused in grading for 1000-level or 2000-level MATH classes or tutoring. More information is available at: https://math.vt.edu/undergrad-math/Jobs.html

Study Abroad

Global Education Office: globaleducation.vt.edu

Students who wish to study abroad should meet with an advisor in the Global Education Office. Together with that office, we have created a document outlining some study abroad opportunities for math majors:
https://math.vt.edu/content/dam/math_vt_edu/documents/study-abroad/Mathematics-Study-Abroad-Advising-Guide.pdf

Mathematical Contests and Competitions

The Putnam Competition: Each December, a nation-wide mathematics examination called the William Lowell Putnam Competition, is given. The examination is graded for individual performances and carries a considerable amount of prestige. In addition, each participating school selects three students whose composite score represents the school.

The Putnam Competition only covers material from undergraduate mathematics, including concepts from analysis, linear algebra, and number theory. In this regard, the problems are “elementary”, but often quite tricky. The best way to prepare for the examination is to practice on previous examinations or similar problems.

Mathematical Contest in Modeling: In the Mathematical Contest in Modeling (MCM), three-person teams are given 96 hours to develop mathematical models to solve a real-world problem, evaluate their solution, and write a paper describing the results. These papers are generally around thirty pages long. The questions are open-ended and over a broad range of topics. Past problems include fingerprint identification, submarine tracking, air traffic control, and velociraptor hunting strategies. The following handbook provides detailed information on this prestigious competition, in which Virginia Tech teams have done very well in recent years:
https://www.math.vt.edu/content/dam/math_vt_edu/documents/mcmguide.pdf
Senior Awards

In each of the four degree options, one student is selected each year as the Outstanding Senior. An overall Outstanding Senior is also selected. All awardees are recognized at an awards reception in the spring semester. The College of Science has awards for one Outstanding Senior and one Outstanding Researcher among all students in the college, and the Math Department puts forward a nominee for each of these awards.

PREPARATION FOR POST-GRADUATION ENDEAVORS

Career and Professional Development: career vt edu
Handshake at Virginia Tech: career vt edu/job search/Handshake
Math Department Career Advising Website: math vt edu/careers

Whether you plan to seek employment immediately upon graduation or attend graduate school, you need to start investigating and planning early in your undergraduate career. There is great value in attending career fairs and having summer internships, particularly internships that take place the summer prior to graduation. You should consult with an advisor in the Career and Professional Development office for resume reviews and help with the Handshake platform. In addition, consult with a Mathematics Department Career Advisor and review the many job and internship opportunities that are posted on the Math Department career advising website throughout the year: math vt edu/careers

In the present economic climate, many jobs are found from past internships or by directly contacting companies, even ones who are not interviewing on campus or ones who do not say they will interview mathematics majors. Talk to a career advisor in the Career and Professional Development office about the best ways to make these contacts. Always be informed about a company/agency and its work before attending an interview.

If you plan to go to graduate school, you should make preliminary inquiries about graduate schools early in your academic career. Talk regularly to your academic advisor and also talk to professors that may have attended the graduate school(s) in which you are interested or whose area of mathematical interest aligns with yours. Many graduate schools require the Graduate Record Examination (GRE). Plan to take it in October of your senior year. Finally, allow enough time for professors to write your letters of reference.

You may wish to consider graduate work in a field other than mathematics; probably in the area of your applied concentration. One need not have a B.S. in a discipline in order to do graduate work in that area. There will, of course, be certain basic courses that you will be expected to have had. Talk with an academic advisor in the other discipline about such courses.
EMPLOYMENT AREAS FOR MATHEMATICS MAJORS AND RELATED SAMPLE COURSES FOR MATH-RELATED AND APPLICATIONS AREA COURSE PLANS (TRADITIONAL & ACM OPTIONS)

Some of the general areas where mathematics majors find employment are listed below. After each title, some courses which should help you in the area are listed. These lists are simply examples, though, and many other course options are possible. Prerequisites have not been explicitly noted.

Not all courses are offered every term. Check the relevant Timetable of Classes to determine the availability of particular classes and prerequisites. Some of the courses listed below might be restricted to majors within that discipline, so enrollment may require a permission from the department offering the course. This permission is decided upon by the offering department, not the Mathematics Department.

Business, Actuarial Science, Finance, or Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIS</td>
<td>Principles of Accounting</td>
</tr>
<tr>
<td>ECON</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>FIN</td>
<td>Introduction to Finance</td>
</tr>
<tr>
<td>FIN</td>
<td>Financial Analytics</td>
</tr>
<tr>
<td>FIN</td>
<td>Financial Planning Technology and Modeling</td>
</tr>
<tr>
<td>FIN</td>
<td>International Financial Management</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>STAT</td>
<td>Probability and Distributions</td>
</tr>
<tr>
<td>STAT</td>
<td>Methods of Statistical Computing</td>
</tr>
<tr>
<td>STAT</td>
<td>Theoretical Statistics</td>
</tr>
<tr>
<td>STAT</td>
<td>Experimental Designs</td>
</tr>
<tr>
<td>STAT</td>
<td>Methods of Regression Analysis</td>
</tr>
<tr>
<td>STAT</td>
<td>Contingency Table Analysis</td>
</tr>
<tr>
<td>STAT</td>
<td>Sample Survey Methods</td>
</tr>
<tr>
<td>STAT</td>
<td>Applied Statistical Time Series Analysis</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistical Methods for Engineers</td>
</tr>
<tr>
<td>STAT</td>
<td>Probability and Statistics for Engineers</td>
</tr>
</tbody>
</table>

FIN 3104 is a prerequisite to many advanced courses in finance. Consult the course catalog and [http://www.stat.vt.edu/academics/courses.html](http://www.stat.vt.edu/academics/courses.html) for statistics course duplications.
The Statistics Department offers a minor in actuarial science that includes courses in probability and statistics, economics, and finance. More information can be found at:
https://www.stat.vt.edu/academics/undergraduate/actuarial-science.html

**Business Information Technology**

ACIS 1504  Intro to Business Analytics & Business Intelligence
BIT  2405-2406  Intro to Business Statistics, Analytics, and Modeling
BIT  3424  Intro to Business Analytics Modeling
BIT  3434  Advanced Modeling for Business Analytics
BIT  3444  Advanced Business Computing and Applications
BIT  4434  Computer Simulation in Business

**Computer Science, such as Software Engineering**

CS  1114  Intro to Software Design
See the CS course requirements for the ADM option for further suggestions.

**Data Analytics**

CS  1114  Intro to Software Design

STAT  3005-3006  Statistical Methods
(or CMDA 2005-2006 Integrated Quantitative Sciences)

CMDA 3634  Computer Science Foundations for CMDA
CMDA 3654  Introductory Data Analytics and Visualization
CMDA 4654  Intermediate Data Analytics and Machine Learning
CMDA 4664  Computational Stochastic Modeling

**Consult with your advisor before taking any CMDA courses.** CMDA double-majors may have taken CMDA 2005-2006 instead of STAT 3005-3006. Successfully completing CMDA 2005 will count as 3 credits toward the math-related or applications area (considered equivalent to STAT 3005), if a student may earn credit for this course. Successfully completing CMDA 2005 + CMDA 2006 will count for 6 math-related or applications area credits (considered equivalent to taking STAT 3005 and STAT 3006) if a student may earn credit for these courses. A student can earn credit for at most one of MATH 2204 and CMDA 2005. A student can earn credit for at most one of MATH 2214 and CMDA 2006.
### Economics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2005-2006</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>ECON 3104</td>
<td>Microeconomic Theory</td>
</tr>
<tr>
<td>ECON 3204</td>
<td>Macroeconomic Theory</td>
</tr>
<tr>
<td>ECON 4124</td>
<td>Growth and Development</td>
</tr>
<tr>
<td>ECON 4304</td>
<td>Intro to Econometric Methods</td>
</tr>
<tr>
<td>ECON 4424</td>
<td>Theory of Games and Economic Behavior</td>
</tr>
</tbody>
</table>

### Engineering - Aerospace Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESM 2104</td>
<td>Statics</td>
</tr>
<tr>
<td>ESM 2204</td>
<td>Mechanics of Deformable Bodies</td>
</tr>
<tr>
<td>ESM 2304</td>
<td>Dynamics</td>
</tr>
<tr>
<td>AOE 3014</td>
<td>Fluid Dynamics for AOE</td>
</tr>
<tr>
<td>AOE 3034</td>
<td>System Dynamics and Control</td>
</tr>
<tr>
<td>AOE 3114</td>
<td>Aerodynamics &amp; Compressibility</td>
</tr>
<tr>
<td>ME 3134</td>
<td>Fundamentals of Thermodynamics</td>
</tr>
</tbody>
</table>

### Engineering - Electrical and Computer Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 2004</td>
<td>Electric Circuit Analysis</td>
</tr>
<tr>
<td>ECE 2204</td>
<td>Electronics</td>
</tr>
<tr>
<td>ECE 2504</td>
<td>Intro to Computer Engineering</td>
</tr>
<tr>
<td>ECE 3054</td>
<td>Electrical Theory</td>
</tr>
<tr>
<td>ECE 3105 – 3106</td>
<td>Electromagnetic Fields</td>
</tr>
<tr>
<td>ECE 3204</td>
<td>Analog Electronics</td>
</tr>
<tr>
<td>ECE 3514</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>ECE 4134</td>
<td>Photonics</td>
</tr>
</tbody>
</table>

### Operations Research

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1114</td>
<td>Intro to Software Design</td>
</tr>
<tr>
<td>ISE 2404</td>
<td>Deterministic Operations Research I</td>
</tr>
<tr>
<td>ISE 3414</td>
<td>Probabilistic Operations Research</td>
</tr>
<tr>
<td>ISE 3424</td>
<td>Discrete-Event Computer Simulation</td>
</tr>
<tr>
<td>ISE 3434</td>
<td>Deterministic Operations Research II</td>
</tr>
<tr>
<td>ISE 3614</td>
<td>Human Factors Engineering and Ergonomics</td>
</tr>
</tbody>
</table>
ISE  4404    Statistical Quality Control
STAT  4105-4106    Theoretical Statistics
STAT  4705-4706    Probability and Statistics for Engineers

MATH 4445-4446 are 4000-level MATH course choices that support this career area.

Physics

PHYS  2305-2306    Foundations of Physics
PHYS  3324    Modern Physics
PHYS  3355-3356    Intermediate Mechanics
PHYS  3405-3406    Intermediate Electricity & Magnetism
PHYS  4614    Optics
PHYS  4714    Intro to Biophysics