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Varieties

In algebraic geometry, our fundamental objects of study are
varieties, the zero sets of polynomials. While we can take polynomials from
any ring R[X1, X2, . . . , Xn], we often deal with polynomial rings over an
algebraically closed field k, such as the complex numbers, and use Pn as our
geometric space. We will begin by stating some fundamental definitions:

For a polynomial F ∈ k[X1, . . . , Xn], we call F a homogeneous
polynomial if all monomials of F have the same degree. The
monomials of F are called forms.
An ideal I is a homogeneous ideal if it is generated by a finite set of
forms.

A projective algebraic set V (I) ⊂ Pn is the zero set of a homogeneous ideal. If
we cannot separate V (I) into the union of two smaller non‐empty algebraic
sets, we say that V (I) is irreducible. We then define a projective variety
V ⊂ Pn to be an irreducible algebraic set.

Figure 1. This is the real part of the
projective algebraic set
V (X(ZY 2 − Z2X) + X4) ⊂ P2

Figure 2. The image of Figure 1 in the open
affine plane at Z=1. Note that this
algebraic set is not a variety

Projective Plane Curves

Remark: When F is a homogeneous polynomial, the ideal generated by F
is a homogeneous ideal, V (I) = V (F ), and V (F ) is a variety.
A hypersurface V (F ) ⊂ P2 is the zero set of a homogeneous polynomial in
k[X, Y, Z]. This leads to the following formal definition:

A projective plane curve is a hypersurface in P2.

Figure 3. This is the real part of the Klein
Quartic projective plane curve
V (X3Y + ZY 3 + Z3X)

Figure 4. The Klein Quartic curve
V (X3Y + ZY 3 + Z3X) at Z=1 plotted in
the affine plane

Note that the Klein Quartic curve is non singular.

What are Singularities?

A point P of a given plane curve F is called a multiple point if

Fx(P ) = 0 and Fy(P ) = 0,

meaning that both partial derivatives of the curve vanish at P . Any curve
with such a point is called a singular curve, and we call P a singularity of F .

We can further classify the type of singularity we have. The multiplicity
mP (F ) of a point P on a curve F is the degree of the lowest degree form
Fm where

F = Fm + Fm+1 + · · · + Fn

We have that P is a simple point if and only ifmP (F ) = 1, otherwise P is a
double point if mP (F ) = 2, a triple point if mP (F ) = 3, and so on. A point
P is called an ordinary multiple point ifmP (F ) = m and there arem distinct
tangent lines going through P.

Remark: When F is a projective plane curve, mP (F ) = mP (F∗) where F∗
is the de‐homogenization of F .

Figure 5. The curve V ((X3 + Y 2)3 − X2Y 2)
plotted in the affine plane. Note that at
P = (0, 0) we have a non ordinary
quadruple point

Figure 6. The curve
V ((X2 + Y 2)2 + 3X2Y − Y 3) plotted in the
affine plane. Note that at P = (0, 0) we
have an ordinary triple point

Mappings and Morphisms

Before we try to resolve a singularity, we must first ask the question, what
is a resolution?

First, we define what a birational map is. Let X and Y be varieties. Then
a rational map f : X 99K Y is a morphism from a non‐empty open subset
U ⊂ X to Y . A birational map is then a rational map f such that f has an
inverse rational mapping from Y 99K X . Note that this inverse mapping
need not be defined on all of Y , but only on a non‐empty open subset of
Y .

We can now define what a resolution of singularities is. To resolve a singu‐
larity on a singular projective curve C , we must find a birational map f such
that

f : C ′ → C

where C ′ is a non‐singular curve.

Remark: Every variety over a field of characteristic 0 admits a resolution.

Blowing Up Singularities

Blowing up is a transformation used to resolve singularities by replacing
a problematic point with an entire geometric object—typically a projective
space that captures the limiting directions (tangent directions) at that point.

Formally, blowing up a point on a variety replaces it with the set of directions
through that point, creating a new space where the original singularity is
spread out and often becomes smooth or simpler to analyze.

How its done

Definition (Affine Blow‐up at (0,0) in C2):

Bl0(C2) =
{

((x, y), [u : v]) ∈ C2 × P1 | xv = yu
}

[u : v] records the direction of the point (x, y).
The origin is replaced by a full copy of P1 — the exceptional divisor.

Local Charts (Two Affine Patches):

Chart 1: u 6= 0 ⇒ [1 : t], with y = xt

Chart 2: v 6= 0 ⇒ [s : 1], with x = ys

Each chart gives a new coordinate system where the singularity can be
”spread out”.

Example

Figure 7. The singular curve
V (X3 + X2 − Y 2) in the XY‐plane

Figure 8. The blown up curve over the
singular in the XYZ‐space

Blowing up works because it separates the different tangent directions
through a singular point. Instead of intersecting at a single problematic
point, these directions become distinct points on the new exceptional divi‐
sor. In this case the exceptional divisor is x = 0 and the two tangent lines
at the singularity become two points on the exceptional divisor.

Cremona Transformations

Luigi Cremona

While blowing up helps resolve singularities locally,
it doesn’t always work globally — especially in com‐
plex or higher‐dimensional cases. In some situations,
singularities persist, or new ones emerge.
This is where Cremona transformations come in.
They’re not just local fixes, but global birational maps
that reconfigure the entire projective plane using a
combination of blow‐ups and blow‐downs. Rather
than trying to smooth out a space point‐by‐point,
Cremona transformations can reshape the geome‐
try and turn complicated configurations into simpler
ones.

A plane Cremona transformation is a birational map ϕ : P2 → P2 given by

[x : y : z] 7→ [f1(x, y, z), f2(x, y, z), f3(x, y, z)]
where f1, f2, f3 are all homogeneous polynomials. It is a rational map that
is not defined everywhere, but becomes a regular morphism after resolving
its indeterminacy via blow‐ups.

The Standard Quadratic Cremona Transformation:
ϕ : [x : y : z] 7→ [yz : xz : xy]

It is a degree two map and it is undefined at the three coordinate points
(base points): [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. Blowing up these points resolves
the indeterminacies.

Special Quadratic Cremona Transformations:

While the standard transformation has three proper base points, special
quadratic Cremona transformations involve infinitely near points. These
points lie on exceptional divisors introduced by earlier blow‐ups.

Type I: One Infinitely Near Base Point ‐ One of the base points lies on the
exceptional divisor created by blowing up a proper point.

Type II: Two Infinitely Near Base Points ‐ Two base points are infinitely near,
often lying on successive blow‐ups at the same location.

Problem

Our research focus is to classify plane Cremona transformations fixing a
quartic plane curve. More precisely, given a quartic curve C in P2, we want
to classify all plane Cremona transformations Q such that C ⊆ Q(C).

Figure 9. The quartic curve
V (X2Y 2 − Z4)

Figure 10. The projection
of the quartic curve with
z = 1
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