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Square Triangulations

• A triangulation of a square is a subdivision of the square
into nonoverlapping triangles.

Figure 1:Triangulations of the square

Monsky’s Theorem

There exists no triangulation of a square with an odd num-
ber of triangles.

Sperner Colorings

• A Sperner coloring on a triangulation of a square is a map
from the vertices of the triangulation to ‘colors’ {R, B, G}
such that
1 every edge of the triangulation and the square maps to

exactly two colors;
2 there exists a side of the square σ with endpoints

colored R and B such that all other sides of the square
contain at most one of these colors.

• A triangle given a Sperner coloring is said to be rainbow if
its vertices are all three colors.

Figure 2:A Sperner coloring (left), and a non-Sperner coloring (right)

Rainbow Triangles

• A "rainbow triangle" on a Sperner coloring is a triangle
with three differently colored vertices. We first must prove
its existence by noting that its boundary contains one
segment with blue and red vertices (a BR segment), and
every other triangle contains an even number of BR
segments.

• Observe an odd number of color changes among the
vertices on the segment σ alternating between blue and
red.

• Every BR segment within the interior is counted twice, for
an even sum. By definition of the Sperner coloring, no side
besides σ contributes any BR segments, and σ contributes
an odd number.

• Thus there exists a rainbow triangle. It remains to show
this rainbow triangle cannot have area 1

n with n odd.

Tropical Sperner Colorings

• It remains to show that we can produce a Sperner coloring
of the vertices of our triangulization.

• We use tropical geometry and first consider Thomas’
special case of vertices with rational coordinates.

• Consider the p-adic valuation described in the next
column. We assign our vertices without loss of generality
to (1,1), (2,1), (1,2), and (2,2) and find the 2-adic
valuation on Q of our vertices of the triangulization.

• Graphing the image of the tropical line x + y + 1 = 0
produces a Sperner coloring.

• By inspection, the criteria for the sides are fulfilled. For
any arbitrary line in the triangulization, the tropical map
produces a point, a parallel line, or a translation of the
image, so it intersects at most two of three regions,
indicating the edge of a triangle uses only two colors.
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Figure 3:Tropical coloring of the plane divided by p(x, y) = x ⊕ y ⊕ 1.

The Tropical Semiring

• We utilize the tropical semiring T = R ∪ {∞} with the
operations, for x, y ∈ T,

x ⊕ y = min{x, y} (1)
x ⊗ y = x + y (2)

• The tropical semiring induces a new and interesting
geometry to study.

Tropical Plane Curves

A tropical polynomial is a function p : Rn → R. We consider
the case n = 2, in which the surface we define from the poly-
nomial to be in the plane. Any such planar polynomial has
the form

p(x, y) =
⊕
i,j

ci,j ⊗ xiyj = min{ci,j + xiyj : i, j} (3)

The surface is defined as the curve on which two monomials of
the sum in p reach the same minimum. Consider the following
polynomial

p(x, y) = x ⊕ y ⊕ 1 = min{x, y, 1} (4)
which graph is the projection of the intersection of the planes
x, y, and 1 onto the xy-plane.
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Figure 4:The graph and curve of p(x, y) = x ⊕ y ⊕ 1

Valuations

• Valuations generalize measures of multiplicity.

• For a field K and a totally ordered abelian group Γ, a
valuation is a function ν : K \ {0} → Γ such that
1 ν(ab) = ν(a) + ν(b)
2 ν(a + b) ≥ min{ν(a), ν(b)} with equality if ν(a) ̸= ν(b)

• An example is the well known p-adic valuation
νp : Z \ {0} → Z for a prime p. We define, for a nonzero
n ∈ Z,

νp(n) = max{k ∈ N : pk | n} (5)

• The p-adic valuation is a measure of the divisibility of
some n by p.

Extending the p-adic Valuation

• For the coloring used to prove Monsky’s Theorem, the
p-valuation must be extended to the real numbers.

• The valuation can be extended easily to the rationals by
defining, for nonzero a/b ∈ Q,

νp(a/b) = νp(a) − νp(b) (6)

• It follows from Zorn’s Lemma that there exists a
transcendental basis T for the field extension R/Q. This
allows us to extend the p-adic valuation to

Q(T ) = FracQ[T ] =
{

p

q
: p, q ∈ Q[T ], q ̸= 0

}
(7)

• Each p ∈ Q[T ] is of the form
p =

∑
j∈J

ae⃗j
T e⃗j (8)

where each ae⃗j
is a coefficient of the monomial T e⃗j for

some appropriate exponent vector e⃗j over T . We can
define, for nonzero p,

νp(p) = min{ae⃗j
: j ∈ J} (9)

and, for nonzero p/q ∈ Q(T ),
νp(p/q) = νp(p) − νp(q) (10)

• Since R/Q(T ) is a purely algebraic field extension, there
exists a valuation extension to R from our definitions on
Q(T ).
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