

ANGELA LYNN PEACE

Professor, Department of Mathematics, Virginia Tech
angelapeace@vt.edu

RESEARCH INTERESTS

Mathematical Modeling, Applied Dynamical Systems, Differential Equations, Population dynamics, Theoretical Ecology, Mathematical Biology, Ecological Stoichiometry

EDUCATION

Ph.D. Applied Mathematics Arizona State University, Tempe, AZ Advisor: Yang Kuang	Aug 2014
M.A. Mathematics Arizona State University, Tempe, AZ	May 2011
B.S. Computational Mathematical Sciences Arizona State University, Tempe, AZ	May 2009

PROFESSIONAL EXPERIENCE

Professor <i>Department of Mathematics</i> Virginia Tech, Blacksburg, VA	Since 2026
Professor Associate Chair for Research and Engagement	2025
Associate Professor	2024-2025
Assistant Professor <i>Department of Mathematics and Statistics</i> Texas Tech University, Lubbock, TX	2021-2025
iDiv Sabbatical Fellow <i>German Centre for Integrative Biodiversity Research</i> Leipzig, Germany	2015-2021
Postdoctoral Fellowship <i>NIMBioS: National Institute for Mathematical and Biological Synthesis</i> University of Tennessee, Knoxville Project Title: Stoichiometric food web models: How food quality affects population structures	July 2022– Jan 2023
Laboratory Research Assistant <i>Jim Elser Lab, School of Life Science, Arizona State University</i> Research in the Elser on the stoichiometric population growth and the interactions between species.	Aug 2014–July 2015

JOURNAL EDITOR

Mathematical Biosciences	Since 2023
Mathematical Biosciences and Engineering (MBE) Special Issue: Dynamical system models of biology, ecology, toxicology, and epidemiology Special Issue: Resource Explicit Population Models, Vol: 16(1) 2019	2018-2019, 2023

AWARDED GRANTS

John Wesley Powell Center for Analysis and Synthesis, USGS	2024-2026
<i>Role: Co-Pi, Amount: Travel expenses for 17 people to annual meetings, postdoctoral fellow</i>	
Working group: Defining subsidystress gradients for metals and relevance for US surface waters	
PI: David Costello, Co-PIs: Elizabeth Herndon, Travis Schmidt	
 NSF Division of Mathematical Sciences	Sept. 2023-Aug. 2026
<i>Role: PI Amount: \$249,798.00</i>	
Title: Structured Population Dynamics Subject to Stoichiometric Constraints	
Co-PI: Gregory Mayer, The Department of Environmental Toxicology, TTU	
 Davis College of Agricultural Sciences & Natural Resources, TTU	July 2023-July 2024
<i>Role: Co-PI, Amount: \$50,000</i>	
Title: Math and Ecology Synthesis for Agriculture (MESA) Network	
PI: Matthew Barnes, Co-PIs: Amanda Laubmeier, Nicholas Smith, Texas Tech University	
 NSF Division of Mathematical Sciences	Sept. 2021-Aug. 2024
<i>Role: Senior Personnel, Amount: \$275,585</i>	
Title: REU Site: Mathematical, Statistical and Computational Methods for Problems in the Life Sciences	
PIs: Linda Allen, Leif Ellingson, Texas Tech University	
 NSF Division of Mathematical Sciences	Fall 2020
<i>Role: PI, Amount: \$17,750</i>	
Title: XVIII Red Raider Minisymposium on Modeling in a Heterogeneous World	
Co-PIs: Linda Allen, Kenneth Schmidt, Joshua Padgett, Wenjing Zhang, Texas Tech University	
 NSF EEID Directorate for Biological Sciences	June 2018 - May 2023
<i>Role: Senior Personnel, Amount: \$2,494,511 (my TTU budget: \$165,356)</i>	
Title: Transmission pathways and immunological factors that affect invasion potential of the recently discovered pathogen, <i>Batrachochytrium salamandrivorans</i>	
PI: Matt Gray, University of Tennessee, Knoxville	
 NSF Division of Mathematical Sciences	Sept. 2018 - Aug. 2021
<i>Role: Co-PI, Amount: \$80,000, additional \$36,843 in student supporting supplemental grant</i>	
Title: Collaborative Research: Linking Pharmacokinetics to Epidemiological Models of Vector-Borne Diseases and Drug Resistance Prevention	
 NSF Division of Mathematical Sciences	Sept. 2016 - Aug. 2019
<i>Role: PI, Amount: \$341,316</i>	
NSF Grant #: 1615697	
Title: Robust Mathematical Models of Ecotoxicological Dynamics Subject to Stoichiometric Constraints	
Co-PI: Gregory Mayer, The Department of Environmental Toxicology, TTU	
 Texas Tech University Seed Grants for Interdisciplinary Research	June. 2017 - Dec. 2018
<i>Role: Co-PI, Amount: \$75,000</i>	
Title: TTURTLES: TTU Research Team Linking Education and Sciences	
PI: Celine Godard, Department of Environmental Toxicology, TTU; Co-PI: Jerry Dwyer, College of Education, TTU	

National Institute for Mathematical and Biological Synthesis, NSF

January 2018

Role: Workshop Organizer, Amount: travel expenses for 34 people

Investigative Workshop: Modeling Ecotoxicological Dynamics Subject to Stoichiometric Constraints

Co-Organizer: Paul Frost, Trent University, Canada

AWARDS**President's Excellence in Teaching Award**

2021

*Texas Tech University***Excellence in Research Award**

2018

*College of Arts & Sciences Distinguished Alumni & Faculty Excellence program***W. Dayawansa Award for Research and Teaching**

2021

*Department of Mathematics and Statistics, TTU***SIAM Graduate Professor Award**

2024

*TTU Chapter of Society of Industrial and Applied Mathematics***Best Mentor Award**

2018

*Department of Mathematics and Statistics, TTU***Excellence in Applied Math Research W. Dayawansa Award**

2017

*Department of Mathematics and Statistics, TTU***JOURNAL PUBLICATIONS**

* denotes students authors

58. González AL, Merder J, Andraczek K, et al. Nitrogen deposition reveals global patterns in plant and animal stoichiometry. *Nat Commun.* 2025;16
57. Ain* MQ, Peace A. Predicting the burden of co-infections in seasonally driven dynamics of pediatric Rotavirus and Norovirus. *Infectious Disease Modelling.* 2025;
56. Chesnais Q, Bahlai CA, Peace A, Crowder DW, Bosque-Pérez NA, Mauck KE. Meta-analysis reveals strong evidence for adaptive host and vector manipulation by plant viruses. *Functional Ecology.* 2025;00:1–18
55. Oladepo* O, Peace A. Nutrient-Driven Adaptive Evolution of Foraging Traits Impacts Producer-Grazer Dynamics. *Bulletin of Mathematical Biology.* 2025;87(8):102
54. Hridoy* MB, Peace A. An exploration of the interplay between treatment and vaccination in an Age-Structured Malaria Model using non-linear ordinary differential equations. *Healthcare Analytics.* 2025;7:100386
53. Chowdhury* MM, Gray MJ, Carter ED, Woodhams DC, Mccartney JA, Surles JG, et al. Fungal pathogen transmission dynamics in North American salamanders: Mathematical insights for disease management. *Ecological Modelling.* 2025;501:111028
52. Gray MJ, Brunner JL, Earl JE, Wirth W, Peace A, Ariel E. Design and analysis of ranavirus studies: insights into planning surveillance, modeling host-pathogen dynamics, and performing risk analyses. In: *Ranaviruses: Emerging Pathogens of Ectothermic Vertebrates.* Springer; 2024. p. 313–371

51. Van de Waal DB, White LA, Everett R, Asik L, Borer ET, Frenken T, et al. Reconciling contrasting effects of nitrogen on host immunity and pathogen transmission using stoichiometric models. *Ecology*. 2023;p. e4170
50. Everett RA, Lewis AL, Kuerbis A, Peace A, Li J, Morgenstern J. Data driven mixed effects modeling of the dual process framework of addiction among individuals with alcohol use disorder. *PLoS one*. 2023;18(8):e0265168
49. Seabloom EW, Peace A, Asik L, Everett RA, Frenken T, González AL, et al. Dead or alive: carbon as a currency to integrate disease and ecosystem ecology theory. *Oikos*. 2023;p. e09880
48. Prosper O, Gurski K, Teboh-Ewungkem M, Peace A, Feng Z, Reynolds M, et al. Modeling Seasonal Malaria Transmission. *Letters in Biomathematics*. 2023;10(1):3–27
47. Gurski K, Peace A, Prosper O, Stepien T, Teboh-Ewungkem M. Mathematicians Navigating Parenthood: Lessons Learned, Methodologies, and Useful Solutions That Were Beneficial During the COVID-19 Pandemic. *Notices of the American Mathematical Society*. 2022;69(11):1918–1922
46. Li J, Broussard M, Tomer N, Jochym M, Fonseka* D, Peace A, et al. Honey bee (*Apis mellifera*) hive placement is more influential than orchard layout on the fruit set of a dioecious crop. *Ecological Modelling*. 2022;472:110074
45. Chowdhury* MM, Islam MR, Hossain MS, Tabassum* N, Peace A. Incorporating the mutational landscape of SARS-COV-2 variants and case-dependent vaccination rates into epidemic models. *Infectious Disease Modelling*. 2022;7(2):75–82
44. Borer ET, Paseka RE, Peace A, Asik L, Everett R, Frenken T, et al. Disease-mediated nutrient dynamics: Coupling host-pathogen interactions with ecosystem elements and energy. *Ecological Monographs*. 2022;92(2):e1510
43. Ibragimov A, Peace A. Light driven interactions in spatial predator-prey chemotaxis model in the presence of chemical agent. *TWMS Journal of pure and applied mathematics*. 2022;13(2):222–244
42. Islam* MR, Gray MJ, Peace A. Identifying the dominant transmission pathway in a multi-stage infection model of the emerging fungal pathogen *Batrachochytrium Salamandrivorans* on the Eastern Newt. In: *Infectious Diseases and Our Planet*. Springer; 2021. p. 193–216
41. Frenken T, Paseka R, González AL, Asik L, Seabloom EW, White LA, Borer ET, Strauss AT, Peace A, Van de Waal, DB. Changing elemental cycles, stoichiometric mismatches, and consequences for pathogens of primary producers. *Oikos*. 2021;
40. Borer ET, Asik* L, Everett RA, Frenken T, Gonzalez AL, Paseka RE, Peace A, Seabloom EW, Strauss AT, Van de WaalDB. Elements of disease in a changing world: modelling feedbacks between infectious disease and ecosystems. *Ecology Letters*. 2021;
39. Peace A, Frost PC, Wagner ND, Danger M, Accolla C, Antczak P, et al. Stoichiometric Ecotoxicology for a Multisubstance World. *BioScience*. 2021;71(2):132–147
38. Shakiba N, Edholm CJ, Emerenini BO, Murillo AL, Peace A, Saucedo O, et al. Effects of environmental variability on superspreading transmission events in stochastic epidemic models. *Infectious Disease Modelling*. 2021;6:560–583

37. Higgins R, Mills* CJ, Peace A. A Time Scales Approach for Modeling Intermittent Hormone Therapy for Prostate Cancer. *Bulletin of Mathematical Biology*. 2020;82(11):1–16

36. Ledder G, Russo SE, Muller EB, Peace A, Nisbet RM. Local control of resource allocation is sufficient to model optimal dynamics in syntrophic systems. *Theoretical Ecology*. 2020;p. 1–21

35. Paseka RE, White LA, Van de Waal DB, Strauss AT, González AL, Everett RA. Peace A, Seabloom EW, Frenken T, Borer ET. Disease-mediated ecosystem services: Pathogens, plants, and people. *Trends in Ecology & Evolution*. 2020;

34. Awoyemi* OM, Subbiah S, Velazquez* A, Thompson* KN, Peace AL, Mayer GD. Nitrate-N-mediated toxicological responses of *Scenedesmus acutus* and *Daphnia pulex* to cadmium, arsenic and their binary mixture (Cd/Asmix) at environmentally relevant concentrations. *Journal of Hazardous Materials*. 2020;p. 123189

33. Asik* L, Chen M, Peace A. The effects of excess food nutrient content on a tritrophic food chain model in the aquatic ecosystem. *Journal of Theoretical Biology*. 2020;491:110183

32. Awoyemi* OM, Subbiah S, Thompson* K, Velazquez A, Peace A, Mayer GD. Trophic-level interactive effects of phosphorus availability on the toxicities of cadmium, arsenic, and their binary mixture in media-exposed *Scenedesmus acutus* and media and dietary-exposed *Daphnia pulex*. *Environmental Science & Technology*. 2020;

31. Islam* MR, Peace A, Medina D, Oraby T. Integer Versus Fractional Order SEIR Deterministic and Stochastic Models of Measles. *International Journal of Environmental Research and Public Health*. 2020;17(6):2014

30. Peace A, Pattemore D, Broussard M, Fonseka D, Tomer N, Bosque-Pérez NA, et al. Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop. *PloS one*. 2020;15(10):e0231120

29. Chen M, Asik* L, Peace A. Stoichiometric knife-edge model on discrete time scale. *Advances in Difference Equations*. 2019;2019(1):1–16

28. Peace A, Wang H. Compensatory Foraging in Stoichiometric Producer–Grazer Models. *Bulletin of mathematical biology*. 2019;81(12):4932–4950

27. Hassan* MN, Peace A. Mechanistically derived Toxicant-mediated predator-prey model under Stoichiometric constraints. *Mathematical biosciences and engineering: MBE*. 2019;17(1):349–365

26. Peace A, ORegan SM, Spatz JA, Reilly PN, Hill RD, Carter ED, et al. A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways. *Eco-logical Modelling*. 2019;410:108777

25. Asik* L, Kulik* J, Long KR, Peace A. Seasonal Variation of Nutrient Loading in a Stoichiometric Producer–Consumer System. *Bulletin of Mathematical Biology*. 2019;p. 1–15

24. Hassan* MN, Asik* L, Kulik* J, Long K, Peace A. Environmental Seasonality on Predator–Prey Systems under Nutrient and Toxicant Constraints. *Journal of theoretical biology*. 2019;

23. Shaw AK, Igoe M, Power AG, Bosque-Pérez NA, Peace A. Modeling Approach Influences Dynamics of a Vector-Borne Pathogen System. *Bulletin of mathematical biology*. 2019;p. 1–18

22. Asik* L, Peace A. Dynamics of a Producer–Grazer Model Incorporating the Effects of Phosphorus Loading on Grazers Growth. *Bulletin of mathematical biology*. 2019;p. 1–17
21. Dissanayake* C, Juan L, Long KR, Peace A, Rana* MM. Genotypic Selection in Spatially Heterogeneous Producer-Grazer Systems Subject to Stoichiometric Constraints. *Bulletin of mathematical biology*. 2019;p. 1–17
20. Manore CA, Teboh-Ewungkem MI, Prosper O, Peace A, Gurski K, Feng Z. Intermittent Preventive Treatment (IPT): Its role in averting disease-induced mortality in children and in promoting the spread of antimalarial drug resistance. *Bulletin of mathematical biology*. 2019;81:193–234
19. Hassan* MN, Thompson* K, Mayer G, Peace A. Effects of Excess Food Nutrient on Producer-Grazer Model under Stoichiometric and Toxicological Constraints. *Mathematical biosciences and Engineering*. 2018;16(1):150–167
18. Rana* MM, Dissanayake* C, Juan L, Long KR, Peace A. Mechanistically derived spatially heterogeneous producer-grazer model subject to stoichiometric constraints. *Mathematical biosciences and Engineering*. 2018;16(1):222–233
17. Chen M, Fan M, Xie C, Peace A, Wang H. Stoichiometric Food Chain Model on Discrete Time Scale. *Mathematical Biosciences and Engineering*. 2018;16(1):101–118
16. Asik* L, Kulik* J, Long KR, Peace A. Dynamics of a Stoichiometric Producer-Grazer System with Seasonal Effects on Light Level. *Mathematical Biosciences and Engineering*. 2018;16(1):501–514
15. Edholm CJ, Emerenini BO, Murillo AL, Saucedo O, Shakiba N, Wang X, et al. Searching for superspreaders: Identifying epidemic patterns associated with superspreading events in stochastic models. In: *Understanding Complex Biological Systems with Mathematics*. Springer; 2018. p. 1–29
14. Murphy CA, Nisbet RM, Antczak P, Garcia-Reyero N, Gergs A, Lika K, et al. Incorporating sub-organismal processes into dynamic energy budget models for ecological risk assessment. *Integrated environmental assessment and management*. 2018;
13. Murphy CA, Nisbet RM, Antczak P, Garcia-Reyero N, Gergs A, Lika K, et al. Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual Model. In: *A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment*. Springer; 2018. p. 281–302
12. Shaw AK, Peace A, Power AG, Bosque-Pérez NA. Vector population growth and condition-dependent movement drive the spread of plant pathogens. *Ecology*. 2017;98:2145–2157
11. Peace A, Poteat MD, Wang H. Somatic Growth Dilution of a toxicant in a predator-prey model under stoichiometric constraints. *Journal of theoretical biology*. 2016;407:198–211
10. Elser JJ, Kyle M, Learned J, McCrackin ML, Peace A, Steger L. Life on the stoichiometric knife-edge: effects of high and low food C: P ratio on growth, feeding, and respiration in three *Daphnia* species. *Inland Waters*. 2016;6(2):136–146
9. Peace A. Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models. *Ecological Modelling*. 2015;312:125–135
8. Yamamichi M, Meunier CL, Peace A, Prater C, Rúa MA. Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics. *Oikos*. 2015;124(7):960–969

7. Teboh-Ewungkem MI, Prosper O, Gurski K, Manore CA, Peace A, Feng Z. Intermittent Preventive Treatment (IPT) and the Spread of Drug Resistant Malaria. In: Applications of Dynamical Systems in Biology and Medicine. Springer; 2015. p. 197–233
6. Peace A, Wang H, Kuang Y. Dynamics of a Producer–Grazer Model Incorporating the Effects of Excess Food Nutrient Content on Grazers Growth. *Bulletin of mathematical biology*. 2014;76(9):2175–2197
5. Burgess C, Peace A, Everett R, Allegri B, Garman P. Computational modeling of interventions and protective thresholds to prevent disease transmission in deploying populations. *Computational and mathematical methods in medicine*. 2014;2014
4. Diakite I, Edwards DA, Emerick B, Panaggio M, Peace AL, Raymond C, et al. Improving a Fuel Cell Assembly Process. *Mathematics-in-Industry Case Studies*. 2014;6(1)
3. Peace A, Zhao Y, Loladze I, Elser JJ, Kuang Y. A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics. *Mathematical biosciences*. 2013;244(2):107–115
2. Elser JJ, Loladze I, Peace AL, Kuang Y. Lotka re-loaded: modeling trophic interactions under stoichiometric constraints. *Ecological Modelling*. 2012;245:3–11
1. Elser JJ, Peace AL, Kyle M, Wojewodzic M, McCrackin ML, Andersen T, et al. Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. *Ecology letters*. 2010;13(10):1256–1261

COMPLETED DOCTORAL STUDENTS

Md Nazmul Hassan

PhD August 2019

Department of Mathematics and Statistics, Texas Tech University

Dissertation Title: Ecotoxicological Dynamics Subject to Stoichiometric Constraints

Committee members: Angela Peace (chair), Linda Allen, Wenjing Zhang

Following position: Research postdoc at North Carolina State

Lale Asik

PhD May 2020

Department of Mathematics and Statistics, Texas Tech University

Dissertation Title: Environmental Variations in Stoichiometric Predator-Prey Models

Committee members: Angela Peace (chair), Linda Allen, Wenjing Zhang, Katharine Long

Following position: Tenure-track assistant professor at the University of the Incarnate Word

Md Rafiul Islam

PhD August 2020

Department of Mathematics and Statistics, Texas Tech University

Research: Analyzing Epidemic Models with Multiple Stages of Infection

Committee members: Angela Peace (chair), Linda Allen, Wenjing Zhang

Following position: Postdoc at the Department of Mathematics at Iowa State University

Dilini Fonseka

PhD August 2020

Department of Mathematics and Statistics, Texas Tech University

Dissertation title: Modeling Approaches to Understand Plant-Pollinator-Herbivore Interactions

Committee members: Angela Peace (chair), Linda Allen, Wenjing Zhang

Following position: Instructor and the director of the Quantitative Literacy Center at Southwestern college in Kansas

Ramiro Ramirez

PhD August 2020

Department of Mathematics and Statistics, Texas Tech University

Dissertation title: Stoichiometric Aquatic Food-Web Models Coupling Pelagic and Benthic Zones

Committee members: Angela Peace (chair), Amanda Laubmeier, Raegan Higgins

Following position: Postdoc at UT Health San Antonio

Mihrab Chowdhury

PhD May 2024

Department of Mathematics and Statistics, Texas Tech University

Dissertation title: Data Integrated Mathematical Modeling Approaches to Explore the Complexities of Amphibian Fungal Transmission Dynamics

Committee members: Angela Peace (chair), Amanda Laubmeier, Linda Allen

Following position: Postdoc at Clemson University

Hridoy Bari

PhD August 2025

Department of Mathematics and Statistics, Texas Tech University

Dissertation title: Infectious Disease Dynamics in Heterogeneous Populations: Stochastic, Seasonal, and Structured Epidemic Models with Intervention Strategies

Committee members: Angela Peace (chair), Linda Allen (co-chair), Sophia Jang

Following position: Postdoc at Virginia Tech

CURRENT GRADUATE STUDENTS

Dhruba Pariyar

PhD expected 2026

Department of Mathematics and Statistics, Texas Tech University

Research Topic: Ecological modeling, plant pathogens and stage-structured populations

Mohammadi Ain

PhD expected 2026

Department of Mathematics and Statistics, Texas Tech University

Research Topic: Modeling pediatric epidemics

Oluwagbemisola Oladepo

PhD expected 2027

Department of Mathematics and Statistics, Texas Tech University

Research Topic: Adaptive foraging behaviors subject to stoichiometric constraints

COMPLETED MASTERS STUDENTS

Bridget Mann

MS Summer 2023

Department of Mathematics and Statistics, Texas Tech University

Report title: Modeling Spider Populations using Differential Equations

Committee members: Angela Peace (chair), Amanda Laubmeier

Randall Karr

MS Fall 2019

Department of Mathematics and Statistics, Texas Tech University

Report title: Trophic transfer efficiencies in competitive food chains under light and nutrient gradients

Committee members: Angela Peace (chair), Victoria Howle

Monir Uz Zaman

MS Summer 2018

Department of Mathematics and Statistics, Texas Tech University

Report title: Parameter Sensitivity Analysis on a Delay Differential Equation Model of Cancer

Committee members: Angela Peace (chair), Victoria Howle

Md Shah Alam

MS Fall 2018

Department of Mathematics and Statistics, Texas Tech University

Report title: Parameter Sensitivity Analysis of Dynamics of Ovarian Tumor Growth Model

Committee members: Angela Peace (chair), Aminur Rahman

UNDERGRADUATE RESEARCH MENTOR**Rachel Wissenbach, Nate Ward, Nicolette Gaston**

Summer 2023 REU

Department of Mathematics and Statistics, Texas Tech University

Research Topic: Food Webs Subject to Stoichiometric Constraints, Coral-Zooxanthellae Symbiosis

Joel Garza

Summer 2020- Summer 2021

Texas Tech University, Honors College

Project: Mathematical models of Covid-19

Reagan Collins

Summer 2017- May 2020

Department of Mathematics and Statistics, Texas Tech University, Honors College

Project: Anti-angiogenic treatment of tumors using Agent-Based models in NetLogo.

Adam Harper

2015-2016

Department of Mathematics and Statistics, Texas Tech University, PRISM REU

Poster: Predicting how Ranavirus Affects the Chiricahua Leopard Frog

TEACHING EXPERIENCE**Professor***Department of Mathematics and Statistics, Texas Tech University*

Higher math for engineers and scientists I, Undergraduate honors

Fall 2025

Associate Professor*Department of Mathematics and Statistics, Texas Tech University*

Stochastic Models in Ecology and Epidemiology, graduate level

Summer 2025

Ordinary differential equations online, class size 112

Summer 2025

Ordinary differential equations (engineers), class size 52

Spring 2025

Calculus III, class size 94

Spring 2024

Interdisciplinary graduate course: Mathematical Ecology

Fall 2023

Calculus III, class size 49

Fall 2023

Ordinary differential equations (engineers), class size 116

Spring 2022

Differential equations, Graduate prelim course

Fall 2021

Higher math for engineers and scientists I, Undergraduate honors

Fall 2021

Assistant Professor*Department of Mathematics and Statistics, Texas Tech University*

Calculus II, synchronize online, class size 96

Spring 2021

Calculus II, synchronize online, class size 52	Fall 2020
Calculus II, class size 112	Spring 2020
Biomathematics for Undergraduates, Honors	Spring 2019
Calculus I, class size 124	Fall 2018
Calculus II, class size 110	Spring 2018
Honors Calculus II	Fall 2017
Graduate Course: Biomathematics I, Stochastic Models	Spring 2017
Graduate Course: Biomathematics II, Deterministic Models	Fall 2016
Honors Calculus II	Spring 2016
Honors Calculus I	Fall 2015

SELECTED CONFERENCE/SEMINAR PRESENTATIONS

SMB Annual Meeting <i>Society of Mathematical Biology</i>	July 2025 <i>Edmonton, Alberta</i>
Talk: Nutrient-Driven Adaptive Foraging Behaviors	
Talk: Teaching Mathematical Ecology across disciplines	
 Applied Mathematics Seminar <i>California State University, Northridge</i>	Nov 15, 2024 <i>Northridge, CA</i>
Talk (Invited): Limitations, Stressors, and Constraints in Population Dynamics	
 SMB-KSMB Annual Meeting <i>Society of Mathematical Biology/ Korean Society of Mathematical Biology</i>	July 2024 <i>Seoul, Korea</i>
Talk: Size of exposure dose drives infections dynamics of amphibian fungal pathogens	
Talk: Elemental constraints on stage-structured populations	
 ASLO 2024 Meeting <i>Association for the Sciences of Limnology and Oceanography</i>	April, 2024 <i>Madison, WI</i>
Talk: Understanding Nitrogen Fixation in Phototrophic Diazotrophs: Insights from a Stoichiometric model	
 Applied Mathematics Seminar <i>Mathematics Colloquium, Oklahoma State</i>	April 19, 2024 <i>Stillwater, OK</i>
Talk (Invited): Limitations, Stressors, and Constraints in Theoretical Ecology	
 Applied Mathematics Seminar <i>Math Biology Seminar, University of Maryland</i>	Feb. 20, 2024 <i>College Park, Md</i>
Talk (Invited): Limitations, Stressors, and Constraints in Theoretical Ecology	
 Mathematical Biology Seminar <i>Arizona State University</i>	September 2023 <i>Tempe, AZ</i>
Talk (Invited): Nutrient-mediated pathogen transmission and host immunity in a stoichiometric disease model	
 SMB Annual Meeting <i>Society of Mathematical Biology</i>	July 2023 <i>Columbus OH</i>
Organized session: The 10th anniversary of MBIs 2013 Workshop for Young Researchers	
Talk: Adaptive foraging behaviors in food web models	

Conference of Biological Stoichiometry*University of Nebraska-Lincoln*

March 2022

Lincoln, Nebraska

Talk: Exploring stoichiometric foraging behaviors with models

BioMath Seminar*German Centre for Integrative Biodiversity Research*

Sept 7, 2022

Leipzig, Germany

Talk (Invited): Population Dynamics Subject to Stoichiometric Constraints

BioMath Seminar*Virginia Tech University*

March 2, 2022

Blacksburg, VA

Talk (Invited): Dynamical systems coupling disease and ecosystem ecology

Math Seminar Series*Cameron University*

Nov. 9, 2021

Virtual

Talk: Modeling Frameworks that Integrate Disease and Ecosystem Ecology

2021 SIAM Conference on Dynamical Systems*Society for Industrial and Applied Mathematics*

May 24, 2021

Virtual

Talk: Population dynamics of daphnia interacting with nutrients and light in a water column

Biomathematics Seminar*University of Alberta*

February 8, 2021

Alberta, CA

Talk (Invited): Stoichiometric Ecotoxicology: modeling frameworks unifying ecotoxicology with ecological stoichiometry

SELECTED WORKSHOPS AND TUTORIALS ATTENDED**Research Collaborative Network: Nitrogen Fixation across aquascapes***Michigan Technological University*

Oct. 2023

*Houghton, MI*Working group member on stoichiometric drivers and constraints on N₂-fixation to develop conceptual and quantitative models of the stoichiometric controls on autotrophic and heterotrophic N₂-fixers from populations to individual ecosystems.**Modeling approaches to super-spreading disease dynamics across animal and plant systems.***American Institute of Mathematics, SQuaRE*

June 2024, July 2025

Pasadena, CA

Collaborative team working to synthesize novel understanding generated in parallel systems of pathogens in plant vs. animal communities

Superspreaders and their role in epidemics: a stochastic approach*American Institute of Mathematics, SQuaRE*

Jan 2019, July 2023

San Jose, CA

Working with collaborators to explore the effect of demographic and environmental variability on human-to-human disease transmission rates among superspreaders.

Optimizing pollination strategies*The New Zealand Institute for Plant & Food Research Limited*

Jan 2019, June 2019

New Zealand

External collaborator team member

SESYNC workshop on disease and ecosystem processes*National Socio-Environmental Synthesis Center*

Nov 2018, Nov 2019, June 2019

Annapolis, MD

Member of multi-disciplinary group working to create models that couple disease and nutrient ecology

WAMB! Women Advancing Mathematical Biology: Understanding Complex Biological Systems with Mathematics April 2017
Mathematical Biology Institute *The Ohio State University*

Co-leader with Dr. Linda Allen of a project entitled: Stochastic modeling of infectious diseases

Dynamic models to link molecular perturbations to individual impacts for ecological risk assessment of chemicals April 2016
NIMBioS National Institute for Mathematical and Biological Synthesis *University of Tennessee*

Member of multi-disciplinary group of molecular biologists, systems biologists, DEB and AOP modelers, ecotoxicologists and mathematicians with interest and expertise in developing dynamic, mechanistic models to predict impacts on individuals from high throughput assays used to screen chemicals for potential risk.

Vector Movement and Disease Working Group March 2015, March 2016
NIMBioS National Institute for Mathematical and Biological Synthesis *University of Tennessee*

The goals of this working group are to (i) develop a general understanding of how vector movement is driven by vector population dynamics, characteristics of host plants and landscapes, and community dynamics, and (ii) investigate the implications of vector movement for the dispersal of vector-borne plant pathogens.

Malaria-Leishmania Co-infection Investigative Workshop May 2015
NIMBioS National Institute for Mathematical and Biological Synthesis *University of Tennessee*

The focus of this workshop was to identify challenges for the control of malaria-leishmaniasis co-infections in South Asian and the African continent. The workshop also modeled the complexity involved in the propagation of these co-infections in resource limited regions

Woodstoich August 2014
5 days of peace and stoichiometry *Sydney, Australia*

A workshop on ecological stoichiometry and the related framework nutritional geometry. I participated on a team project on exploring connections between ecological stoichiometry and rapid evolution. Travel support awarded by NSF.

SELECTED MATH OUTREACH

Society of Mathematical Biology Early Career Workshop and Mentor 2022-2024
Workshop speaker, panel moderator, early career mentor

Talk: Thriving your way through Graduate School given in 2025 Edmonton Alberta, 2024 Seoul Korea, and 2023 Columbus Ohio

Talk: Navigating the early years: surviving the post doc years given in 2022 Heidelberg, Germany

Association for Women in Mathematics (AWM) student chapter, faculty mentor 2019-2025
Texas Tech University

Main faculty mentor for the AWM Raiders, a local chapter of the AWM.

Enhancing Diversity in Graduate Education (EDGE) Program Instructor Summer 2018
Texas Tech University

Linear Algebra Instructor for young women preparing for graduate school in Mathematics

Emmy Noether High School Mathematics Days May 2017-2025
Texas Tech University, Department of Mathematics and Statistics

Annually participate in organizing and conducting educational workshops for high school girls and lead a collaborative math-a-thon